

ROBOTIC ADDITIVE MANUFACTURING TECHNOLOGIES

WAAM (Wire Arc Additive Manufacturing)
Laser-DED (Laser Directed Energy Deposition)

Compact Series

Special Series

Lab Series

Low Buy-to-Fly Ratios

Achieves low BTF ratios (up to 1.5) by precisely depositing material only where needed, minimizing waste and enabling efficient use of high-value metals.

Faster Manufacturing

Offers significant advantage on decreasing lead times by up to 80% compared to traditional processes like casting, forging and machining.

Cost Effective Production

Lower production costs by minimizing raw material waste, reducing machining time and allowing for on-demand manufacturing, thus avoiding excessive inventory costs.

Low Carbon Emissions / Green Manufacturing

Eco-friendly manufacturing technology with low CO2 emission compared to conventional manufacturing.

Design Freedom

Design and manufacturing freedom aspects from medium to large scale parts using various materials.

TECHNOLOGIES

- Realtime Process Monitoring
- Closed-Loop Process Control
- Realtime Anomaly Detection
- Melt-Pool Monitoring
- Thermal Monitoring and Control

- Advanced Sensor Fusion Technology
- Digital Twin for WAAM
- High Deposition Rate
- High Stable Arc
- Controllable Heat Input

- Wide Range of Materials
- Cold Metal Transfer Technology
- Easy Robotic Tool Path Planning
- Uninterrupted Large-Scale Manufacturing

INDUSTRIAL APPLICATIONS

Pressure Vessel

Connector

Propeller

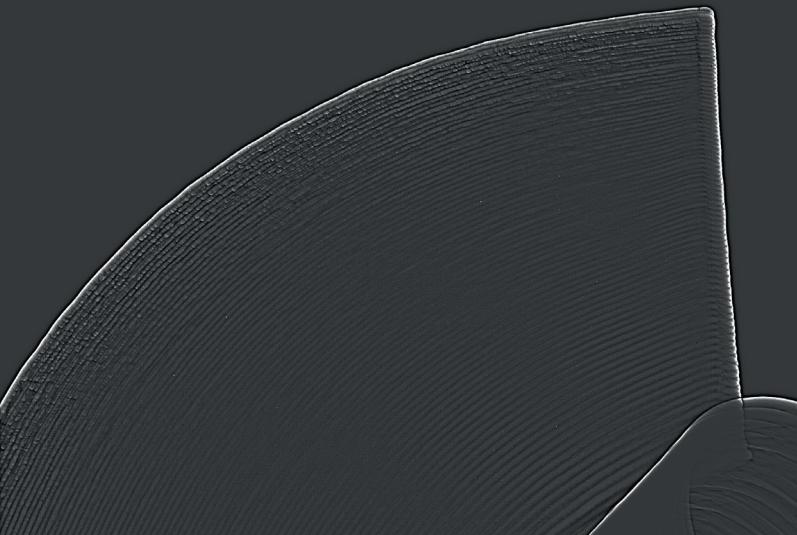
Aesthetic Shape

Composite Mold

Rocket Nozzle

Landing Gear

Valve



Revolutionizing Research on WAAM

MW-LAB Technologies:

- Programming with Cobot/Robot
- High Stable Arc with CMT
- Process Development
- New Alloy Processing
- In-Situ Monitoring and Control
- Digital Twin
- Robotic Additive Manufacturing

MW-LAB provide cost effective solutions for universities, institutes and research centers.

MATERIALS

Aluminum Alloys:

- 2319, 4043, 5087, 5183, 5356, 6061, 6063, 7075

Steel Alloys:

- ER70, ER80, ER90, ER120

Stainless Steel Alloys:

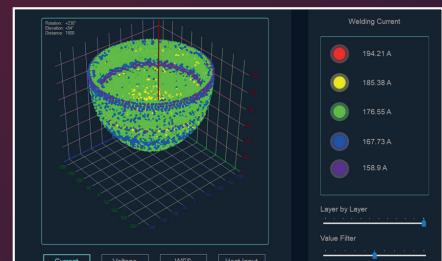
- ER304L, ER307, ER316L, ER630, ER2209, ER2594, Invar 36

Nicel Alloys:

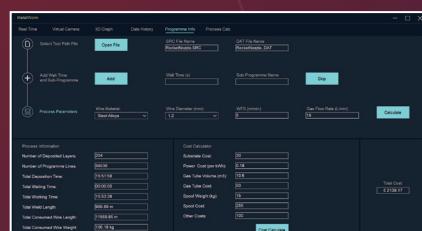
- Inconel 625, Inconel 718

Copper Alloys:

- CuAl8Ni6

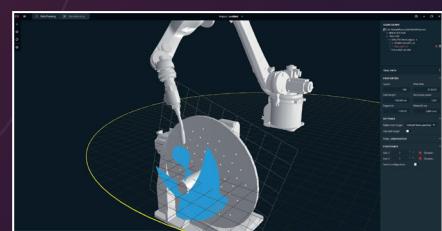

and More

MetalWorm Diagnostic Software


- Real Time Data Collection
- Real Time Process Monitoring
- Digital Twin for WAAM
- Strong Process/Material Library
- Melt Pool Monitoring
- Realtime Process Control
- Arc Voltage Control
- Temperature Control

MetalWorm Robotic Tool Path Planning

- Robot & Process Simulation
- Internal Slicing Strategies
- Multi Axis Tool Path Planning
- External Axis Support
- Tool Path Planning by Region
- Tool Path Orientation Adjustment
- Customize Robot Programs
- Collision Detection


Anomaly Detection and Analysis

Process Planning

Real-Time Process Monitoring

Robotic Toolpath Planning

